Abstract-Effective execution of a planned path by an underwater vehicle is important for proper analysis of the gathered science data, as well as to ensure the safety of the vehicle during the mission. Here, we propose the use of an unscented Kalman filter to aid in determining how the planned mission is executed. Given a set of waypoints that define a planned path and a dicretization of the ocean currents from a regional ocean model, we present an approach to determine the time interval at which the glider should surface to maintain a prescribed tracking error, while also limiting its time on the ocean surface. We assume practical mission parameters provided from previous field trials for the problem set up, and provide the simulated results of the Kalman filter mission planning approach. The results are initially compared to data from prior field experiments in which an autonomous glider executed the same path without pre-planning. Then, the results are validated through field trials with multiple autonomous gliders implementing different surfacing intervals simultaneously while following the same path.