People with Down's syndrome (DS) are at high risk for developing Alzheimer's disease (AD) at a relatively young age. This increased risk is not observed in people with intellectual disabilities for reasons other than DS and for this reason it is unlikely to be due to nonspecific effects of having a neurodevelopmental disorder but, instead, a direct consequence of the genetics of DS (trisomy 21). Given the location of the amyloid precursor protein (APP) gene on chromosome 21, the amyloid cascade hypothesis is the dominant theory accounting for this risk, with other genetic and environmental factors modifying the age of onset and the course of the disease. Several potential therapies targeting the amyloid pathway and aiming to modify the course of AD are currently being investigated, which may also be useful for treating AD in DS. However, given that the neuropathology associated with AD starts many years before dementia manifests, any preventative treatment must start well before the onset of symptoms. To enable trials of such interventions, plasma, CSF, brain, and retinal biomarkers are being studied as proxy early diagnostic and outcome measures for AD. In this systematic review, we consider the prospects for the development of potential preventative treatments of AD in the DS population and their evaluation.