We present a design methodology and manufacturing process for the construction of articulated three-dimensional microstructures with features on the micron to centimeter scale. Flexure mechanisms and assembly folds result from the bulk machining and lamination of alternating rigid and compliant layers, similar to rigid-flex printed circuit board construction. Pop-up books and other forms of paper engineering inspire designs consisting of one complex part with a single assembly degree of freedom. Like an unopened pop-up book, mechanism links reside on multiple interconnected layers, reducing interference and allowing folding mechanisms of greater complexity than achievable with a single folding layer. Machined layers are aligned using dowel pins and bonded in parallel. Using mechanical alignment that persists during bonding allows device layers to be anisotropically pre-strained, a feature we exploit to create self-assembling structures. These methods and three example devices are presented.