Early diagnosis and treatment are crucial to the outcome of lower respiratory tract infections (LRTIs). In this study, we developed an assay combining multiplex PCR and Luminex technology (MPLT) for the detection of nine important respiratory bacterial pathogens, which frequently cause LRTIs. These were Streptococcus pneumoniae, Moraxella catarrhalis, Staphylococcus aureus, Streptococcus pyogenes, Haemophilus influenzae, Mycoplasma pneumoniae, Legionella spp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Through the hybridization reaction between two new synthesized multiplex PCR products and MagPlex-TAG Microspheres, we demonstrate that the detection limits for these nine pathogens were as low as 102–103 CFU/mL. Furthermore, 86 clinical bronchoalveolar lavage fluid specimens were used to evaluate this method. Compared with the results of nine simplex real-time PCR reactions targeting these nine pathogens, this MPLT assay demonstrated a high diagnostic accuracy for Streptococcus pneumoniae (sensitivity, 87.5% and specificity, 100%). Furthermore, sensitivity and specificity for the other eight pathogens all attained 100% diagnostic accuracy. In addition, the consistency between MPLT and the nine real-time PCR reactions exceeded 98.8%. In conclusion, MPLT is a high-throughput, labor-saving and reliable method with high sensitivity and specificity for identifying nine respiratory pathogens responsible for LRTIs. Indeed, this assay may be a promising supplement to conventional methods used to diagnose LRTIs.