This chapter explores lactose hydrolysis, emphasizing conventional techniques and the noteworthy immobilization of β-galactosidase on polymeric matrices to enhance the process. Lactose, present in milk and dairy, poses challenges for lactose-intolerant individuals, requiring enzymatic hydrolysis for lactose-free product development. The presence of other milk components, such as proteins and minerals, can indirectly influence the efficiency of lactose hydrolysis by potentially interacting with β-galactosidase enzyme or affecting its stability and activity, making it necessary to control factors such as enzyme concentration, temperature, pH, and reaction time to improve lactose hydrolysis rates. The chapter delves into established methodologies, covering enzymatic kinetics, reaction conditions, and substrate concentrations. It also describes the innovative approach of immobilizing β-galactosidase on polymeric supports to enhance enzyme stability, reusability, and overall efficiency in lactose hydrolysis. Discussions include the design of suitable polymeric matrices, providing insights into mechanisms governing catalytic performance. This comprehensive exploration contributes to understanding lactose hydrolysis, offering valuable insights for developing efficient and sustainable enzymatic processes applicable to the food and pharmaceutical industries.