Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To understand the subcellular localization of the vitamin D receptor (VDR) and to measure VDR content in single cells, we recently developed a fluorescent labeled ligand, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-calcitriol. This tagged hormone has intact biological activity, high affinity and specific binding to the receptor, and enhanced fluorescent emission upon receptor binding. Using BODIPY-calcitriol, here we monitored the subcellular distribution of VDR in living cultured cells by microscopy. Time course studies showed that an equilibrium between the cytoplasmic and nuclear hormone binding developed within 5 min and was maintained thereafter. We found a substantial proportion of VDR residing in the cytoplasm, colocalized with endoplasmic reticulum, the Golgi complex, and microtubules. Confocal microscopy clarified the presence of VDR within discrete regions of the nucleus and along the nuclear envelope. There was no VDR in the plasma membrane. Low affinity BODIPY-calcitriol binding sites were in the mitochondria. Mutations in the VDR gene selectively and specifically altered BODIPYcalcitriol distribution. Defects in the hormone binding region of VDR prevented both nuclear and cytoplasmic hormone binding. Defects in the DNA binding region decreased the nuclear retention of VDR and prevented localization to nuclear foci. These results with BODIPYcalcitriol reveal cytoplasmic VDR localization in living cells and open the possibility of studying the three-dimensional architecture of intranuclear target sites. The vitamin D receptor (VDR)1 belongs to the v-erb-A superfamily of ligand activated transcription factors. The hormonal forms of vitamin D and other steroid hormones act through their receptors to regulate the transcription of target genes and thus modulate a variety of cell functions. These hormones also exert rapid, so-called "nongenomic" actions that take place outside the nucleus. Over the last 30 years we learned many aspects of steroid receptor activation, but the subcellular distribution of the receptors remained controversial. The use of radioligands led to the classical model for steroid receptor activation, which placed the receptors in the cytoplasm (1). Later, antibodies were raised against steroid receptors, and immunocytology suggested that unactivated steroid receptors reside exclusively in the nucleus (2). In the past few years, evidence has accumulated showing that glucocorticoid, mineralocorticoid, and androgen receptors reside both in the cytoplasm and in the nucleus. Nevertheless, the consensus has remained unchanged for the nuclear localization of estrogen receptors, thyroid hormone receptors, and VDR (3). Several studies with immunocytology on aldehyde-fixed cells showed that VDR resides exclusively in the nucleus (4). However, using microwave fixation, we found a significant portion of VDR in the cytoplasm (5). Since then, cytoplasmic VDR has been found by others (6 -10), but the existence of cytoplasmic VDR is still not generally accepted (11,12).While the role of nucle...
To understand the subcellular localization of the vitamin D receptor (VDR) and to measure VDR content in single cells, we recently developed a fluorescent labeled ligand, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-calcitriol. This tagged hormone has intact biological activity, high affinity and specific binding to the receptor, and enhanced fluorescent emission upon receptor binding. Using BODIPY-calcitriol, here we monitored the subcellular distribution of VDR in living cultured cells by microscopy. Time course studies showed that an equilibrium between the cytoplasmic and nuclear hormone binding developed within 5 min and was maintained thereafter. We found a substantial proportion of VDR residing in the cytoplasm, colocalized with endoplasmic reticulum, the Golgi complex, and microtubules. Confocal microscopy clarified the presence of VDR within discrete regions of the nucleus and along the nuclear envelope. There was no VDR in the plasma membrane. Low affinity BODIPY-calcitriol binding sites were in the mitochondria. Mutations in the VDR gene selectively and specifically altered BODIPYcalcitriol distribution. Defects in the hormone binding region of VDR prevented both nuclear and cytoplasmic hormone binding. Defects in the DNA binding region decreased the nuclear retention of VDR and prevented localization to nuclear foci. These results with BODIPYcalcitriol reveal cytoplasmic VDR localization in living cells and open the possibility of studying the three-dimensional architecture of intranuclear target sites. The vitamin D receptor (VDR)1 belongs to the v-erb-A superfamily of ligand activated transcription factors. The hormonal forms of vitamin D and other steroid hormones act through their receptors to regulate the transcription of target genes and thus modulate a variety of cell functions. These hormones also exert rapid, so-called "nongenomic" actions that take place outside the nucleus. Over the last 30 years we learned many aspects of steroid receptor activation, but the subcellular distribution of the receptors remained controversial. The use of radioligands led to the classical model for steroid receptor activation, which placed the receptors in the cytoplasm (1). Later, antibodies were raised against steroid receptors, and immunocytology suggested that unactivated steroid receptors reside exclusively in the nucleus (2). In the past few years, evidence has accumulated showing that glucocorticoid, mineralocorticoid, and androgen receptors reside both in the cytoplasm and in the nucleus. Nevertheless, the consensus has remained unchanged for the nuclear localization of estrogen receptors, thyroid hormone receptors, and VDR (3). Several studies with immunocytology on aldehyde-fixed cells showed that VDR resides exclusively in the nucleus (4). However, using microwave fixation, we found a significant portion of VDR in the cytoplasm (5). Since then, cytoplasmic VDR has been found by others (6 -10), but the existence of cytoplasmic VDR is still not generally accepted (11,12).While the role of nucle...
Paget's disease is characterized by markedly increased osteoclast formation and bone resorption followed by excessive new bone formation. Osteoclasts in Paget's disease are increased both in number and size, contain paramyxoviral-like nuclear inclusions, and can have up to 100 nuclei per cell. Marrow culture studies have identified several abnormalities in osteoclast formation in Paget's disease. Osteoclast-like multinucleated cells formed more rapidly in marrow cultures from patients with Paget's disease, produced increased levels of interleukin-6 (IL-6), and expressed high levels of IL-6 receptors compared to normals. IL-6 levels were also increased in bone marrow and peripheral blood of patients with Paget's disease. In addition, osteoclast precursors from patients with Paget's disease are hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and calcitonin. The increased sensitivity of osteoclast precursors to 1,25(OH)2D3 is mediated through the vitamin D receptor (VDR), since 24-hydroxylase activity is also up-regulated at concentrations of 1,25(OH)2D3 that are one log less than that needed to induce 24-hydroxylase activity in osteoclast precursors from normals. However, VDR numbers and affinity for 1,25(OH)2D3 do not differ in osteoclast precursors from Paget's patients compared to those from normals. Synergistic interactions between cytokines such as IL-6 and 1,25(OH)2D3 also cannot explain the enhanced sensitivity of osteoclast precursors from patients with Paget's disease to 1,25(OH)2D3. Interestingly, coculture studies of osteoclast precursors and cells from the marrow microenvironment of patients with Paget's disease and normals have demonstrated that the marrow microenvironment is more osteoclastogenic than normal. Thus, studies of the cell biology of osteoclasts in Paget's disease have demonstrated an increased rate of osteoclast formation and abnormalities in both osteoclast precursors and the marrow microenvironment. Enhanced IL-6 production by osteoclasts in Paget's disease may further amplify the increased osteoclast formation already ongoing in the pagetic lesion, and may explain the increased bone turnover at uninvolved sites distant from the pagetic lesion.
The seco-steroid hormone 1alpha,25(OH)(2)-vitamin D(3) (1,25-D(3)) is known to generate biological responses via both genomic and non-genomic rapid signal transduction pathways. The calcium regulated annexin II/p11 heterotetramer (AII(2)/p11(2)] was proposed by Baran and co-authors to be the membrane receptor responsible for mediating non-genomic, rapid actions of 1,25-D(3), based on ligand affinity labeling, competition, and saturation analysis experiments. Given the cytosolic presence of both the monomeric and heterotetrameric form of AII and their functional regulation by intracellular calcium concentrations, which are known to be affected by 1,25-D(3) rapid, non-genomic activities, we investigated in vitro the affinity of [(3)H]1,25-D(3) for the AII monomer and AII(2)/p11(2) in the absence and presence of calcium using saturation analysis and gel-filtration chromatography. Using two different techniques for separating bound from free ligand (perchlorate and hydroxylapatite (HAP)) over a series of 30 experiments, no evidence for specific binding of [(3)H]1,25-D(3) was obtained with or without the presence of 700 nM exogenous calcium, using either the AII monomer or AII(2)/p11(2). However saturable binding of [(3)H]1,25-D(3) to the lipid raft/caveolae enriched rat intestinal fraction was consistently observed (K(d) = 3.0 nM; B(max) = 45 fmols/mg total protein). AII was detected in lipid raft/caveolae enriched fractions from rat and mouse intestine and ROS 17/2.8 and NB4 cells by Western blot, but incubation in the presence of exogenous calcium did not ablate 1,25-D(3) binding as reported by Baran et al. Our results suggest that AII does not bind 1,25-D(3) in a physiologically relevant manner; however, recent studies linking AII(2)/p11(2) phosphorylation to vesicle fusion and its calcium regulated localization may make AII a possible down-stream substrate for 1,25-D(3) induced rapid cellular effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.