Evading recognition of immune cells is a wellknown strategy of tumors used for their survival. One of the immune evasion mechanisms is the synthesis of kynurenine (KYN), a metabolite of tryptophan, which suppresses the effector T cells. Therefore, lowering the KYN concentration can be an efficient antitumor therapy by restoring the activity of immune cells. Recently, kynureninase (KYNase), which is an enzyme transforming KYN into anthranilate, was demonstrated to show the potential to decrease KYN concentration and inhibit tumor growth. However, due to the limited bioavailability and instability of proteins in vivo, it has been challenging to maintain the KYNase concentration sufficiently high in the tumor microenvironment (TME). Here, we developed a nanoparticle system loaded with KYNase, which formed a Biodegradable and Implantable Nanoparticle Depot named 'BIND' following subcutaneous injection. The BIND sustainably supplied KYNase around the TME while located around the tumor, until it eventually degraded and disappeared. As a result, the BIND system enhanced the proliferation and cytokine production of effector T cells in the TME, followed by tumor growth inhibition and increased mean survival. Finally, we showed that the BIND carrying KYNase significantly synergized with PD-1 blockade in three mouse models of colon cancer, breast cancer, and melanoma.