2021
DOI: 10.1007/s00138-020-01160-8
|View full text |Cite
|
Sign up to set email alerts
|

Development of a character CAPTCHA recognition system for the visually impaired community using deep learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 45 publications
0
4
0
1
Order By: Relevance
“…A new CAPTCHA using Chinese characters was also created, and it removed the imbalance issue of class for model training. A statistical evaluation led to a higher success rate ( Zhang et al, 2021 ). A data selection approach automatically selected data for training purposes.…”
Section: Literature Reviewmentioning
confidence: 99%
“…A new CAPTCHA using Chinese characters was also created, and it removed the imbalance issue of class for model training. A statistical evaluation led to a higher success rate ( Zhang et al, 2021 ). A data selection approach automatically selected data for training purposes.…”
Section: Literature Reviewmentioning
confidence: 99%
“…El más conocido en internet es el sistema Captcha (Completely Automated Public Turing test to tell Computers and Humans Apart) que se sirve de diversos elementos visuales en sus tests para reconocer a un robot (Captcha visual) (Brodić & Amelio, 2020). En la actualidad, el sistema reCAPTCHA de Google analiza además las cookies activas, la dirección IP y el comportamiento del usuario con el movimiento del ratón en el ordenador (Zhang, Liu, Sarkodie-Gyan et al, 2021). Los robots aprendieron a sortear este sistema de protección, pero su comportamiento es más detectable por la lógica automática del movimiento, y en ello se apoya la seguridad de Google (Li et al, 2019).…”
Section: La Identidad Visual Algorítmicaunclassified
“…Text extraction from natural images has been the center of attention for the research community in computer vision. It has the potential to be used in a variety of real-world applications, such as assisting visually impaired persons [1], autonomous traffic sign recognition [2], scene understanding [3], robot navigation [4] and license plate detection [5]. Researchers have well-studied text extraction in documents, and many commercial products are available, having recognition accuracy of more than 99% [6] on the documented text.…”
Section: Introductionmentioning
confidence: 99%