Tsunami monitoring and early warning systems are mainly established to deal with seismogenic tsunamis generated by sudden seafloor fault displacement. However, a global tsunami triggered by the 2022 Tonga volcanic eruption promoted the need for tsunami early warning and hazard mitigation of non-seismogenic tsunamis in coastal countries. This paper studied the spatiotemporal distribution characteristics of historical volcanic tsunamis and summarized high-risk areas of volcanic tsunamis. The circum southwestern Pacific volcanic zone, including the Sunda volcanic belt and the Indo-Australian plate, is a concentrated area of active volcanoes and major volcanic tsunamis. In addition, the challenges associated with adapting seismogenic tsunami techniques for use in the context of volcanic tsunamis were elucidated. At the same time, based on historical records and post-disaster surveys, typical historical volcanic tsunami events and involved mechanisms were summarized. The results show that a majority of volcanic tsunamis may involve multiple generation mechanisms, and some mechanisms show geographical distribution characteristics. The complexity of volcanic tsunami mechanisms poses challenges to tsunami early warning by measuring tsunami sources to evaluate the possible extent of impact, or using numerical modeling to simulate the process of a tsunami. Therefore, a concise overview of the lessons learned and the current status of early warning systems for volcanic tsunamis was provided. Finally, a conceptual scheme of monitoring systems for volcanic tsunamis based on historical volcanoes, real-time volcanic eruption information and sea level data, as well as remote sensing images, was presented.