Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
High-pressure rotary jet drilling holds the promise of increased rate of penetration with reduced weight-on-bit, torque and vibration levels. A high-pressure rotary jet drill, pressure intensifier and gas separator have been developed to allow jet drilling using conventional surface pumping equipment and coiled tubing. High-pressure reaction turbine jet rotors have been developed for drilling holes ranging from 1–1/8" to 3–5/8". Jet drilling tests have shown that 70 MPa (10,000 psi) jets can effectively drill most conventional oil and gas producing formations. Conventional pumps, swivels and tubing operate at up to 28 MPa (4000 psi). A 2.5:1 pressure intensifier was developed to allow jetting at the pressure required for effective drilling. The intensifier can operate on two-phase flow using a downhole gas separator. In two-phase operation the separated gas is used to power the intensifier and the high-pressure water is provided to the jetting nozzles. The gas exhaust from the intensifier is ported to the drilling head to extend the range of the jets. Tests have demonstrated that the jet drilling BHA is capable of cement milling but rates of penetration are lower than a motor and mill and the pumping pressures required are higher. The tools could find applications in situations where a motor cannot be used. For example the tools could power a small diameter lance jet drill through an ultra-short radius curve for lateral drilling. Well service applications include removal of hard scale without risk of damage to damage to downhole equipment. Introduction Jet drilling is limited by the threshold pressure required to erode rock and by submerged fluid jet dissipation. The jet pressure delivered to the rock surface determines the ability of the jet to cut the rock. The jet power then determines the rate of drilling. The pressure that can be delivered to a jetting tool through coiled tubing (CT) is limited by fatigue limits of the coil and the pressure capabilities of available pumps. Approaches to jet drilling at the pressure available through coil include abrasives (Eslinger et al. 2000), and alternate fluids such as supercritical carbon dioxide (Kollé 2000) or acid (Moss et al. 2006). The consumables associated with these approaches add significant cost and complexity to the operation. Another approach is to boost the pressure of the jets with a downhole intensifier. A downhole intensifier has been developed for jet-assisted drilling of 7–7/8" to 8–3/4" holes (Veenhuizen et al. 1995). The unit was designed to work with a conventional rotary drill string and to run on drilling mud. The intensifier area ratio was 14:1 - delivering 84 lpm at 200 MPa from mud supplied at 1260 lpm and 23 MPa. This system provided increased rate of penetration but required higher mud pressure and the economic benefit was marginal. A coiled tubing downhole intensifier has been developed to boost fluid pressure by 2:1 to enable mineral scale milling with standard coil and pumps (Kollé et al. 2007). A rotary gas separator removes the nitrogen from the jetting fluid to allow jetting with a straight fluid jet. Dual passage rotary jetting tools port the nitrogen around the jets to enhance jet range. As discussed below, jet drilling of oil and gas producing formations requires a jet pressure of at least 70 MPa. A larger version of this tool with a higher intensification ratio for rock drilling is discussed here. Rock Erosion Threshold Pressure Typical CT pumping pressures range from 28 MPa for low pressure coil to 70 MPa for heavy wall, high strength coil. In areas where hydrogen sulfide is present, the maximum coil pressure will be reduced. The pressure differential available at the bottomhole assembly (BHA) may be 10 MPa lower than the pump pressure depending on flow rate, coil diameter and coil length. Underbalanced operations with commingled nitrogen and water reduce the bottomhole pressure and can increase the differential pressure available at the BHA relative to pump pressure.
High-pressure rotary jet drilling holds the promise of increased rate of penetration with reduced weight-on-bit, torque and vibration levels. A high-pressure rotary jet drill, pressure intensifier and gas separator have been developed to allow jet drilling using conventional surface pumping equipment and coiled tubing. High-pressure reaction turbine jet rotors have been developed for drilling holes ranging from 1–1/8" to 3–5/8". Jet drilling tests have shown that 70 MPa (10,000 psi) jets can effectively drill most conventional oil and gas producing formations. Conventional pumps, swivels and tubing operate at up to 28 MPa (4000 psi). A 2.5:1 pressure intensifier was developed to allow jetting at the pressure required for effective drilling. The intensifier can operate on two-phase flow using a downhole gas separator. In two-phase operation the separated gas is used to power the intensifier and the high-pressure water is provided to the jetting nozzles. The gas exhaust from the intensifier is ported to the drilling head to extend the range of the jets. Tests have demonstrated that the jet drilling BHA is capable of cement milling but rates of penetration are lower than a motor and mill and the pumping pressures required are higher. The tools could find applications in situations where a motor cannot be used. For example the tools could power a small diameter lance jet drill through an ultra-short radius curve for lateral drilling. Well service applications include removal of hard scale without risk of damage to damage to downhole equipment. Introduction Jet drilling is limited by the threshold pressure required to erode rock and by submerged fluid jet dissipation. The jet pressure delivered to the rock surface determines the ability of the jet to cut the rock. The jet power then determines the rate of drilling. The pressure that can be delivered to a jetting tool through coiled tubing (CT) is limited by fatigue limits of the coil and the pressure capabilities of available pumps. Approaches to jet drilling at the pressure available through coil include abrasives (Eslinger et al. 2000), and alternate fluids such as supercritical carbon dioxide (Kollé 2000) or acid (Moss et al. 2006). The consumables associated with these approaches add significant cost and complexity to the operation. Another approach is to boost the pressure of the jets with a downhole intensifier. A downhole intensifier has been developed for jet-assisted drilling of 7–7/8" to 8–3/4" holes (Veenhuizen et al. 1995). The unit was designed to work with a conventional rotary drill string and to run on drilling mud. The intensifier area ratio was 14:1 - delivering 84 lpm at 200 MPa from mud supplied at 1260 lpm and 23 MPa. This system provided increased rate of penetration but required higher mud pressure and the economic benefit was marginal. A coiled tubing downhole intensifier has been developed to boost fluid pressure by 2:1 to enable mineral scale milling with standard coil and pumps (Kollé et al. 2007). A rotary gas separator removes the nitrogen from the jetting fluid to allow jetting with a straight fluid jet. Dual passage rotary jetting tools port the nitrogen around the jets to enhance jet range. As discussed below, jet drilling of oil and gas producing formations requires a jet pressure of at least 70 MPa. A larger version of this tool with a higher intensification ratio for rock drilling is discussed here. Rock Erosion Threshold Pressure Typical CT pumping pressures range from 28 MPa for low pressure coil to 70 MPa for heavy wall, high strength coil. In areas where hydrogen sulfide is present, the maximum coil pressure will be reduced. The pressure differential available at the bottomhole assembly (BHA) may be 10 MPa lower than the pump pressure depending on flow rate, coil diameter and coil length. Underbalanced operations with commingled nitrogen and water reduce the bottomhole pressure and can increase the differential pressure available at the BHA relative to pump pressure.
Acoustic energy has the potential to stimulate wells by removing drilling and production damage from the formation near the wellbore, overcoming water block and breaking emulsions. All of these applications require high acoustic power and frequency. A fluid-powered turbo-acoustic source has been developed for operation on coiled tubing. This source generates a high-power, high-frequency resonant acoustic signal in the treatment fluid to ensure good acoustic coupling to the formation. The turbo-acoustic source incorporates a turbine, flow-splitter and resonant cavity to convert hydraulic power into an acoustic signal. A 1-11/16″ prototype generates 2 to 12 kW of acoustic power at 4 kHz. The source was used to recover permeability of sandstone that was damaged with guar gum in laboratory tests. Successful recovery of core permeability requires high-acoustic power levels and underbalanced flow conditions to flush the fines out. The turbo-acoustic source provides the ability to restore near-wellbore permeability using coiled tubing in a variety of well configurations. The tool can be operated with a gas separator for underbalanced operations in depleted wells.
The ability to place coiled tubing into a long horizontal well is limited by friction and buckling. A water-hammer tool incorporates a self-piloted poppet valve that converts the kinetic energy of the fluid moving though the coil into water-hammer pressure pulses that reduce friction and applies an end load that pulls on the coil. Water-hammer tools allow routine entry into horizontal sections over 10,000 feet long, representing a significant increase over operation without these tools. These tools incorporate an internal fluid bypass to control the force applied to the bottomhole assembly. An external bypass may also be provided to allow higher flow rates for well circulation. A numerical model of coiled tubing injector weight for coiled tubing well intervention with a water-hammer tool is presented. The model includes the effects of fluid bypass and calculates the maximum feed rate at which a water hammer will be effective for extending the reach of coil. The model is available in spreadsheet format and may be used for job planning and parameter sensitivity analysis. The predicted effects of water-hammer impulse magnitude, fluid bypass, friction coefficient, flow rate, well inclination, and dogleg severity on horizontal reach are discussed. The results of the numerical model are compared with a sample of case histories from over 12,000 extended reach well interventions. These case histories confirm the extended reach capabilities of water-hammer tools and that reducing feed rate below the predicted maximum allows greater extended reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.