Coastal areas, influenced by human activity and natural factors, face major environmental shifts, including climate-induced flood risks. This highlights the importance of forecasting coastal land use for effective flood defense and ecological conservation. Japan’s distinct demographic path necessitates flexible strategies for managing its urban development. The study examines the Ibaraki Coastal region to analyze the impacts of land-use changes in 2030, predicting and evaluating future floods from intensified high tides and waves in scenario-based forecasts. The future roughness map is derived from projected land-use changes, and we utilize this information in DioVISTA 3.5.0 software to simulate flood scenarios. Finally, we analyzed the overlap between simulated floods and each land-use category. The results indicate since 2020, built-up areas have increased by 52.37 sq. km (39%). In scenarios of constant or shrinking urban areas, grassland increased by 28.54 sq. km (42%), and urban land cover decreased by 7.47 sq. km (5.6%) over ten years. Our research examines two separate peaks in water levels associated with urban flooding. Using 2030 land use maps and a peak height of 4 m, which is the lower limit of the maximum run-up height due to storm surge expected in the study area, 4.71 sq. km of residential areas flooded in the urban growth scenario, compared to 4.01 sq. km in the stagnant scenario and 3.96 sq. km in the shrinkage scenario. With the upper limit of 7.2 m, which is the extreme case in most of the study area, these areas increased to 49.91 sq. km, 42.52 sq. km, and 42.31 sq. km, respectively. The simulation highlights future flood-prone urban areas for each scenario, guiding targeted flood prevention efforts.