Brillouin spectroscopy has been widely used for the investigation of acoustic properties of condensed matters in the hypersonic region. A high-pressure Brillouin spectrometer was set up by combining a diamond anvil cell and a tandem multi-pass Fabry-Perot interferometer. It was successfully applied to liquid ethanol, and the pressure dependence of the sound velocity, the refractive index and other acoustic properties were derived based on the measurements. The detailed optical setup and experimental procedure are described.