Development of a Hybrid AI Model for Fault Prediction in Rod Pumping System for Petroleum Well Production
Aoxue Zhang,
Yanlong Zhao,
Xuanxuan Li
et al.
Abstract:Rod pumping systems are widely used in oil wells. Accurate fault prediction could reduce equipment fault rate and has practical significance in improving oilfield production efficiency. This paper analyzed the production journal of rod pumping wells in block X of Xinjiang Oilfield. According to the production journal, oil well maintenance operations are primarily caused by five types of faults: scale, wax, corrosion, fatigue, and wear. These faults make up approximately 90% of all faults. 1354 oil wells in the… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.