Abstract. Ozone (O 3 ) plays an important role in chemical reactions and is usually incorporated in chemical data assimilation (DA). In tropical cyclones (TCs), O 3 usually shows a lower concentration inside the eyewall and an elevated concentration around the eye, impacting meteorological as well as chemical variables. To identify the impact of O 3 observations on TC structure, including meteorological and chemical information, we developed a coupled meteorologychemistry DA system by employing the Weather Research and Forecasting model coupled with Chemistry (WRFChem) and an ensemble-based DA algorithm -the maximum likelihood ensemble filter (MLEF). For a TC case that occurred over East Asia, Typhoon Nabi (2005), our results indicate that the ensemble forecast is reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of O 3 observations impacts meteorological and chemical variables near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical variables adjustment was at higher levels. The impact on meteorological variables was similar in both over China and near the TC. The analysis results are verified using several measures that include the cost function, root mean square (RMS) error with respect to observations, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on the analysisthe cost function and RMS error have decreased by 16.9 and 8.87 %, respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker maximum over northeastern China.