The twitch of the triceps surae muscle (TS), which characterizes the contractile properties independently of volition, differs in amplitude, but not in time course, when evoked in pre or postpubertal children. The aim of the present study was to compare the TS twitch contractile properties in prepubertal children (7 to 11 y). M-wave and twitch were recorded at rest by supramaximal electrical stimulations of the posterior tibial nerve. Twitches were characterized by peak torque (Pt), contraction time (CT), half relaxation time (HRT), and rate of torque development (dPt/dt). Electromechanical delay (EMD) was quantified with regard to the TS M-wave onset. Pt values increased significantly with the age of the prepubertal children but remained lower than that for adult subjects. CT and HRT values did not change with age. Thus, dPt/dt increased significantly between the 7-year-old and the 11-year-old children but remained significantly lower than that for adults. Despite EMD values decreased with age, they remained significantly higher than those of adult subjects. These results confirmed the link between growth processes and the increase in twitch torque for prepubertal children within a limited range of age. However, the time-course characteristics were not affected by age. The increase in dPt/dt and the decrease in the EMD could be used as indirect indicators of changes in contractile kinetics and in musculo-tendinous stiffness with the age of the prepubertal children. It is now well-established that during growth, muscles become stronger (1-4) and this increase in strength is associated with changes in body and muscle sizes (2,5,6).Electrical stimulation techniques, to evoke twitches, can be used to quantify contractile properties independently of volition and skill of the subject. This was performed to compare contractile properties of skeletal muscles between prepubertal and postpubertal children (1,2) or between children (prepubertal and postpubertal) and adult subjects (4,7). It has been shown that twitch force increased with age (1-4) and that this increase was related to the increase in muscle size (2). Furthermore, no significant difference in the time course of the twitch (contraction time and half relaxation time) was reported between prepubertal and postpubertal children (1-4), which suggests that the fiber-type composition of the muscles was already adult-like.In the present study, we analyze contractile properties during prepubertal growth (between 7 and 11 y), not only by the measure of the twitch peak torque and the time-course characteristics of the twitch but also by the quantification of the rate of torque development and of the electromechanical delay.In humans, the rate of torque development has been used to assess changes in muscle contractile kinetics with immobilization (8), electrostimulation training (9), or aging (10).The electromechanical delay (EMD) measured in vivo informs principally about the force transmission through more or less compliant elastic elements rather than about the mech...