2019
DOI: 10.15587/1729-4061.2019.164591
|View full text |Cite
|
Sign up to set email alerts
|

Development of a method for structural optimization of a neural network based on the criterion of resource utilization efficiency

Abstract: Для вирішення задач апроксимації широко використовуються математичні моделі у вигляді штучних нейронних мереж (ШНМ). Використання цієї технології передбачає двох етапний підхід. На першому етапі визначається структура моделі ШНМ, а на другому етапі здійснюється навчання для отримання максимального наближення до еталонної моделі. Максимальне значення наближення до еталону визначається складністю архітектури ШНМ. Тобто, підвищення складності моделі ШНМ дозволяє підвищувати точність апроксимації, а, відповідно, і… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
4
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
3

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 14 publications
0
4
0
Order By: Relevance
“…All models can be divided into analytical ones, which include electrochemical models [6][7][8][9][10][11] and models based on electrical replacement circuits [12][13][14][15][16][17][18][19], and datadriven ones [20][21][22][23][24][25][26][27][28][29][30][31].…”
Section: Literature Reviewmentioning
confidence: 99%
See 1 more Smart Citation
“…All models can be divided into analytical ones, which include electrochemical models [6][7][8][9][10][11] and models based on electrical replacement circuits [12][13][14][15][16][17][18][19], and datadriven ones [20][21][22][23][24][25][26][27][28][29][30][31].…”
Section: Literature Reviewmentioning
confidence: 99%
“…Machine learning methods are widely used to model and predict the state of rechargeable batteries. The models used for that are nonlinear, have pre-known structure defined at the stage of structural optimization [23], and apply experimentally obtained data for parametric identification. That is, they can be classified as datadriven models.…”
Section: Literature Reviewmentioning
confidence: 99%
“…For example, more than 3500 parameters are recorded in the database (DB) per hour of a nonlinear technical object operation. In these conditions, failures of the control and measuring reliability equipment, especially sensors, in the control system of a nonlinear technical object [1,2] lead to serious consequences (15 to 20% of nonlinear technical object failures are associated with the sensor's failure [3,4]). It is related to early completion of work or premature decommissioning of the facility.…”
Section: Introductionmentioning
confidence: 99%
“…The economic assessment of various options for restoring electricity in shop networks to standard quality indicators is the basis proposed in [4][5][6][7] for a decisionmaking method for the operation of electrical equipment, including AM, operating in conditions of poor-quality supply voltage [8].…”
Section: Introductionmentioning
confidence: 99%