Plastic generation exacerbates the challenge of solid waste management. Moreover, plastics emit substantial amounts of microplastics, which infiltrate the environment and food chain, posing significant environmental risks. Compounded by their production from fossil fuels, such as crude oil and natural gas, plastics present a formidable environmental concern. As a result, bioplastics are an attractive alternative to fossil-based plastics since they use renewable energy sources, aim to alleviate worries about reliance on fossil fuels, and are biodegradable, further enhancing their environmental appeal. Along similar lines, the utilization of food waste to produce bioplastics is attracting international interest. The current study presents the results of a life cycle assessment conducted on bioplastic production from food waste, carried out in a pilot-scale reactor located in Greece. The objective was to ascertain the comparative sustainability of recovering food waste for bioplastic production versus utilizing cultivable raw materials. To this end, an equivalent amount of polylactic acid was produced from corn. The findings revealed a reduction in climate change, eutrophication, and ecotoxicity as a result of the study process. Despite these environmental benefits, the study highlighted that energy consumption throughout the process poses a significant environmental burden. This aspect calls for attention and modification to enhance the entire sustainability of the process.