To address the challenges associated with resource inefficiency, low extraction rates, environmental concerns, and high energy consumption in traditional fish oil production from dotted gizzard shad (Konosirus punctatus), a novel approach is needed. This study aimed to develop and evaluate two innovative methods for fish oil extraction and refinement, focusing on their effects on fish oil quality, fatty acid profile, and volatile compound composition throughout the respective processes. The findings of the study revealed that the ethanol-assisted enzymatic extraction method surpassed the conventional enzymatic approach in extraction efficiency, achieving an optimal extraction rate of 74.94% ± 0.45% under optimized process conditions. Moreover, the ethanol-NaOH one-step degumming and deacidification method proved effective in simultaneously removing phospholipids and free fatty acids. Under optimal conditions, a notable reduction in phospholipid content in dotted gizzard shad oil, from 6.80 ± 0.01 mg/g to 1.18 ± 0.01 mg/g, and a substantial decrease in acid value, from 3.31 mg/g to 0.31 mg/g, were observed. In summary, the study analyzed the physicochemical properties, fatty acid composition, and volatile components of fish oil before and after refinement. The refining process was found to preserve the fatty acid composition while efficiently eliminating hydroperoxides and reducing unpleasant odors in the crude oil.