A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre-or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.
Nomenclature
ISRU= in-situ resource utilization MACS = Mars Atmospheric Chemistry Simulator PEM = proton exchange membrane PLC = programmable logic controller RGA = residual gas analyzer TSA = thermal-swing adsorption