2022
DOI: 10.2306/scienceasia1513-1874.2022.s002
|View full text |Cite
|
Sign up to set email alerts
|

Development of a modified biogeography-based optimisation tool for solving the unequal-sized machine and multi-row configuration facility layout design problem

Abstract: An effective layout can reduce material flow distances and manufacturing lead-times, whilst increasing productivity, throughput and cost effectiveness. The facilities layout problem (FLP) is a non-deterministic polynomialtime hard problem, which means that the computational time taken to produce solutions increases exponentially with problem size. Metaheuristics are particularly suitable for solving such problems in reasonable time. Biogeographybased optimisation (BBO) is a well-known nature-inspired computing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 40 publications
(61 reference statements)
0
1
0
1
Order By: Relevance
“…Fischer et al [29] presented new mixed-integer linear programming models for the MRLP. Sooncharoen et al [30] presented a novel biogeography-based optimization tool to solve the unequal area MRLP to minimize the total material flow distance. Ahmadi et al [31] carried out a literature review on MRLP, and presented the applications, essential features, approaches, and resolution methodologies on MRLP.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Fischer et al [29] presented new mixed-integer linear programming models for the MRLP. Sooncharoen et al [30] presented a novel biogeography-based optimization tool to solve the unequal area MRLP to minimize the total material flow distance. Ahmadi et al [31] carried out a literature review on MRLP, and presented the applications, essential features, approaches, and resolution methodologies on MRLP.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Bu nedenle az sayıda çalışmada kesin çözüm yöntemi kullanılmıştır (Fischer ve diğ., 2019;Anjos ve Vieira, 2021;Anjos, Fischer ve Hungerländer, 2018;Hungerländer ve Anjos, 2015). Çok sıralı yerleşim literatürü incelendiğinde genetik algoritma (Safarzadeh ve Koosha, 2017;Lee, 1999;Ficko ve Brezocnik, 2004;Vitayasak, Pongcharoen ve Hicks, 2017), tavlama benzetimi (Tubaileh ve Siam, 2017), harmoni arama algoritması (Lenin ve Siva Kumar, 2021), arı koloni algoritması (Tubaileh ve Siam, 2017;Soimart ve Pongcharoen, 2011), parçacık sürü optimizasyonu algoritması (Hu ve Yang, 2019), değişken komşuluk arama algoritması (Herrán, Colmenar ve Duarte, 2021), öğretme-öğrenme tabanlı optimizasyon algoritması (Vitayasak ve Pongcharoen, 2018), guguk kuşu arama algoritması (Mahalingam ve Nagarajan, 2021), GRASP (Wan, Zuo, Li ve Zhao, 2022), biyocoğrafya temelli optimizasyon algoritması (Sooncharoen, Vitayasak, Pongcharoen ve Hicks, 2022) metasezgisel çözüm yaklaşımlarının kullanıldığı görülmektedir.…”
Section: Introductionunclassified