The design for manufacturing and assembly (DFMA) is a family of methods belonging to the design for X (DfX) category which goal is to optimize the manufacturing and assembly phase of products. DFMA methods have been developed at the beginning of the 1980s and widely used in both academia and industries since then. However, to the best of the authors’ knowledge, no systematic literature reviews or mapping has been proposed yet in the field of mechanical design. The goal of this paper is to provide a systematic review of DFMA methods applied to mechanical and electro-mechanical products with the aim to collect, analyse, and summarize the knowledge acquired until today and identify future research areas. The paper provides an overview of the DFMA topic in the last four decades (i.e., from 1980 to 2021) emphasizing operational perspectives such as the design phase in which methods are used, the type of products analysed, the adoption of quantitative or qualitative metrics, the tool adopted for the assessment, and the technologies involved. As a result, the paper addresses several aspects associated with the DFMA and different outcomes retrieved by the literature review have been highlighted. The first one concerns the fact that most of the DFMA methods have been used to analyse simple products made of few components (i.e., easy to manage with a short lead-time). Another important result is the lack of valuable DFMA methods applicable at early design phases (i.e., conceptual design) when information is not detailed and presents more qualitative than quantitative data. Both results lead to the evidence that the definition of a general DFMA method and metric adaptable for every type of product and/or design phase is a challenging goal that presents several issues. Finally, a bibliographic map was developed as a suitable tool to visualize results and identify future research trends on this topic. From the bibliometric analysis, it has been shown that the overall interest in DFMA methodologies decreased in the last decade.