Solid foams have been intensely studied as promising structured catalytic internals. However, mechanisms governing flow and transport phenomena within the foam structures have not been properly addressed in the literature. The aim of this study was to consider such flow mechanisms based on our experimental results on flow resistance. Two mechanisms were considered: developing laminar flow in a short capillary channel (flow-through model), and flow around an immersed solid body, either a cylinder or sphere (flow-around model). Flow resistance experiments were performed on three aluminum foams of 10, 20, and 40 PPI (pores per inch), using a 57 mm ID test column filled with the foams studied. The foam morphology was examined using microtomography and optical microscopy to derive the geometric parameters applied in the model equations. The flow-through model provided an accuracy of 25% for the experiments. The model channel diameter was the foam cell diameter, and the channel length was the strut thickness. The accuracy of the flow-around model was only slightly worse (35%). It was difficult to establish the geometry of the immersed solid body (sphere or cylinder) because experiment characteristics tended to change from sphere to cylinder with increasing PPI value.