Inflammatory response plays a crucial role in the development and progression of gliomas. Whereas the prognostic esteem of inflammatory response-related genes has never been comprehensively explored in glioma, the RNA-seq information and clinical data of patients with glioma were extracted from TCGA, CGGA, and Rembrandt databases. The differentially expressed genes (DEGs) were picked out between glioma tissue and non-tumor brain tissue (NBT). Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct the prognostic signature in the TCGA cohort and verified in other cohorts. Kaplan–Meier survival analyses were conducted to compare the overall survival (OS) between the high and low-risk groups. Univariate and multivariate Cox analyses were subsequently used to confirm the independent prognostic factors of OS, and then, the nomogram was established based them. Furthermore, immune infiltration, immune checkpoints, and immunotherapy were also probed and compared between high and low-risk groups. The four genes were also analyzed by qRT-PCR, immunohistochemistry, and western blot trials between glioma tissue and NBT. The 39 DEGs were identified between glioma tissue and NBT, of which 31 genes are associated to the prognosis of glioma. The 8 optimal inflammatory response-related genes were selected to construct the prognostic inflammatory response-related signature (IRRS) through the LASSO regression. The effectiveness of the IRRS was verified in the TCGA, CGGA, and Rembrandt cohorts. Meanwhile, a nomogram with better accuracy was established to predict OS based on the independent prognostic factors. The IRRS was highly correlated with clinicopathological features, immune infiltration, and genomic alterations in glioma patients. In addition, four selective genes also verified the difference between glioma tissue and NBT. A novel prognostic signature was associated with the prognosis, immune infiltration, and immunotherapy effect in patients with gliomas. Thus, this study could provide a perspective for glioma prognosis and treatment.