Blood coagulation is an essential physiological process for hemostasis; however, abnormal coagulation can lead to various potentially fatal disorders, generally known as thromboembolic disorders, which are a major cause of mortality in the modern world. Recently, the FDA has approved several anticoagulant drugs for Factor Xa (FXa) which work via the common pathway of the coagulation cascade. A main side effect of these drugs is the potential risk for bleeding in patients. Coagulation Factor IXa (FIXa) has recently emerged as the strategic target to ease these risks as it selectively regulates the intrinsic pathway. These aforementioned coagulation factors are highly similar in structure, functional architecture, and inhibitor binding mode. Therefore, it remains a challenge to design a selective inhibitor which may affect only FIXa. With the availability of a number of X-ray co-crystal structures of these two coagulation factors as protein–ligand complexes, structural alignment, molecular docking, and pharmacophore modeling were employed to derive the relevant criteria for selective inhibition of FIXa over FXa. In this study, six ligands (three potent, two selective, and one inactive) were selected for FIXa inhibition and six potent ligands (four FDA approved drugs) were considered for FXa. The pharmacophore hypotheses provide the distribution patterns for the principal interactions that take place in the binding site. None of the pharmacophoric patterns of the FXa inhibitors matched with any of the patterns of FIXa inhibitors. Based on pharmacophore analysis, a selectivity of a ligand for FIXa over FXa may be defined quantitatively as a docking score of lower than −8.0 kcal/mol in the FIXa-grids and higher than −7.5 kcal/mol in the FXa-grids.