Today, contamination from heavy metals in the atmosphere is a global concern. Efficient detection techniques are therefore necessary if heavy metal exposure levels in different media are to be determined. The voltammetry method for in situ detection of heavy metal ions is a very sensitive electrochemical method. This thesis explores emerging developments in electrode alteration, materials production and experimental optimization. An electrochemical sensing platinum nanoparticle in the tantalum electrode is provided by means of an Ion Beam Sputtering Deposition (IBSD). The electrode was made with a Pt solution, sputtered simultaneously with hydrochloric acid corrosion on tantalum substrate. In the study of heavy metal ions, for example, the platinum nanoparticle electrodes as prepared were used Square wavelength voltammetry (OSWV) Hg2+, Cu2+ and Ag2+. The porous electrodes were observed in a broader range by the Pt nanostructure electrode for heavy metal ions. Furthermore, the susceptibility to detection has been shown to be saturated as the thickness of the layer electrode exceeded 50 nm. For Hg2+ 0,003-1 M, for Cu2+ 0,005-3 M and for Ag2+ the linear detection scale is 0,009-4 M. There has also been good reusability and repeatability. In addition, a scan electron microscope (SEM) used to study platinum electrode forming process and nanostructure. This electrode will have interesting applications in sensing systems.