Optimal RWIS network can be defined as an RWIS configuration where the total number of stations (RWIS density) are determined based on a well-established guideline and the locations are allocated systematically assuming that it will provide the maximum monitoring coverage of the network. This paper examines and quantifies the benefit of an optimized RWIS network and how these benefits impact traffic safety. The methodological framework presented herein builds upon our previous efforts in RWIS location-allocation, where the kriging variance is used as a performance indicator for monitoring coverage. In this study, the network coverage index (NCI) parameter is proposed to gauge RWIS network performance and quantitatively evaluate its impact on traffic safety. The findings of this study reveal a strong dependency between the NCI and the RWIS network configuration. In terms of traffic safety, the relationship between NCI and safety effectiveness can be expressed as a polynomial function, where the two are proportional to one another. In the state of Iowa, an RWIS network with 80% monitoring coverage (NCI = 0.8) can reduce additional 40 collisions per site annually compared to a network without RWIS stations. Based on the findings obtained in this study, road agencies and RWIS planners can now be assisted with conceptualizing the capabilities of an optimized RWIS network, which will help them increase monitoring coverage, and in the process, gain a quantitative understanding on its potential impact on traffic safety.