Three‐dimensional (3D) printed bionic products play an important role in intelligent robotics, microelectronics, and polymers. The printing and manufacturing process of 3D printers is conducive to obtaining soft structures that meet specific requirements, and saves time and cost. Soft intelligent robotics, an emerging research field, has always been developed based on soft materials and actuators with their biological properties. This article reviews the current understanding of 3D bioprinting technologies for dielectric elastomers (DEs), DE actuators (DEAs) and soft robots, such as inkjet, extrusion, laser‐induced and stereolithography bioprinting. 3D printers for fabricating soft materials are presented and classified. The approaches to exploit 3D bioprinters for DEs/DEAs are as follows: (1) 3D printing DEAs utilize ionic hydrogel–elastomer hybrids that are analogous to human muscles, and the DEAs usually have flexible structures and large deformations with multiple functionalities. (2) An electrohydrodynamic (EHD) 3D printer confers high printing resolution and high production efficiency, which offers advantages such as full automation and flexible design. The optimal printing conditions are mainly determined by the effects of printing voltages and ink properties, which are related to the formation of the liquid cone and the printed line width. Furthermore, the advantages of 3D bioprinting technologies have accelerated their development and applications.