The continuous vacuum screw filter (CVSF) for small-scale continuous product isolation of suspensions was operated for the first time with cuboid-shaped and needle-shaped particles. These high aspect ratio particles are very common in pharmaceutical manufacturing processes and provide challenges in filtration, washing, and drying processes. Moreover, the flowability decreases and undesired secondary processes of attrition, breakage, and agglomeration may occur intensively. Nevertheless, in this study, it is shown that even cuboid and needle-shaped particles (l-alanine) can be processed within the CVSF preserving the product quality in terms of particle size distribution (PSD) and preventing breakage or attrition effects. A dynamic image analysis-based approach combining axis length distributions (ALDs) with a kernel-density estimator was used for evaluation. This approach was extended with a quantification of the center of mass of the density-weighted ALDs, providing a measure to analyze the preservation of the inlet PSD statistically. Moreover, a targeted residual moisture below 1% could be achieved by adding a drying module (Tdry = 60 °C) to the modular setup of the CVSF.