The relatively high-level clonality of methicillin-resistant Staphylococcus aureus (MRSA) and its frequent high-level endemicity in nosocomial settings complicate the development of methods for rapid subtyping of MRSA strains that are capable of identifying person-to-person transmission in hospitals. Phage-derived open reading frame (PDORF) typing is an MRSA typing method targeting mobile genetic elements that was recently described and evaluated using a geographically restricted set of isolates. The objective of this study was to develop a multiplex PCR-reverse line blot (mPCR/RLB) assay for PDORF typing and to test its applicability on a broad range of isolates and in an environment where MRSA is highly endemic. The 16 targets were identified using a 23-primer-pair mPCR/RLB assay with two probes for each target. The method was evaluated using 42 MRSA reference strains, including those representing major international clones, and 35 isolates from episodes of suspected nosocomial transmission. In vivo stability was explored using 81 isolate pairs. Pulsed-field gel electrophoresis (PFGE) and spa typing were performed for comparison. Among the 42 reference strains, there were 33 PFGE subtypes, 30 PDORF types, and 22 spa types. Simpson's index of diversity was 0.987, 0.971, and 0.926 for PFGE subtyping, PDORF typing, and spa typing, respectively. Typing of clinical isolates by PDORF typing and PFGE demonstrated concordant results. mPCR/RLB-based PDORF typing has similar discriminatory power to that of PFGE, can assist in tracking MRSA transmission events in a setting of high-level endemicity, and has the advantage of being a high-throughput technique.