This study examines the influence of various electrical parameters on the volume resistivity of the Viton fluoroelastomer. The transient current, the temperature dependence of volume resistivity, the voltage dependence of resistivity, and the surface morphology of Viton insulators are investigated for new and aged specimens. An accelerated aging process has been employed in order to simulate the natural aging of insulators in service. A detailed comparison between the new and aged samples is presented. The transient effect, which is a challenge to the resistivity measurement of insulators, has been investigated. The first 60 s of the resistivity measurement test showed a significant influence from the transient effect and should be excluded from the data. The volume resistivity of both new and aged samples decreased when the temperature increased. However, the resistivity of the aged sample was lower than the new one at all tested temperatures. When the temperature increased from 35 to 190 °C, resistivity decreased from 4.77 × 1010 to 6.99 × 108 Ω-cm for the new sample and from 2.6 × 1010 to 6.68 × 108 Ω-cm for the aged sample under 500 V. Additionally, the results from this study showed that the volume resistivity is inversely proportional to the applied voltage. Finally, scanning electron microscope (SEM) micrographs/images allowed us to closely examine the surface morphology of new and aged Viton samples. The surface of aged samples has been recognized with higher surface roughness and more significant surface cracks leading to poor performance under high voltage applications.