The goal is to develop an adaptive center-of-mass (COM)-based approach for device-less respiratory gating of list-mode positron emission tomography (PET) data. Our method contains two steps. The first is to automatically extract an optimized respiratory motion signal from the list-mode data during acquisition. The respiratory motion signal was calculated by tracking the location of COM within a volume of interest (VOI). The signal prominence (SP) was calculated based on Fourier analysis of the signal. The VOI was adaptively optimized to maximize SP. The second step is to automatically correct signal-flipping effects. The sign of the signal was determined based on the assumption that the average patient spends more time during expiration than inspiration. To validate our methods, thirty-one F-FDG patient scans were included in this paper. An external device-based signal was used as the gold standard, and the correlation coefficient of the data-driven signal with the device-based signal was measured. Our method successfully extracted respiratory signal from 30 out of 31 datasets. The failure case was due to lack of uptake in the field of view. Moreover, our sign determination method obtained correct results for all scans excluding the failure case. Quantitatively, the proposed signal extraction approach achieved a median correlation of 0.85 with the device-based signal. Gated images using optimized data-driven signal showed improved lesion contrast over static image and were comparable to those using device-based signal. We presented a new data-driven method to automatically extract respiratory motion signal from list-mode PET data by optimizing VOI for COM calculation, as well as determine motion direction from signal asymmetry. Successful application of the proposed method on most clinical datasets and comparison with device-based signal suggests its potential of serving as an alternative to external respiratory monitors.