In this study, we explored the use of thermal imaging technology combined with computer vision techniques for assessing surgical incision healing. We processed 1189 thermal images, annotated by experts to define incision boundaries and healing statuses. Using these images, we developed a machine learning model based on YOLOV8, which automates the recognition of incision areas, lesion segmentation and healing classification. The dataset was divided into training, testing and validation sets in a 7:2:1 ratio. Our results show high accuracy rates in incision location recognition, lesion segmentation and healing classification, indicating the model's effectiveness as a precise and automated diagnostic tool for surgical incision healing assessment. Conclusively, our thermal image‐based machine learning model demonstrates excellent performance in wound assessment, paving the way for its clinical application in intelligent and standardized wound management.