“…These include hydrazone bridge (Cabezas and Satterthwait, 1999), oxime bridge (Haney et al, 2011), 1,4-disubstituted-[1,2,3]-triazole linkage (Holland-Nell and Meldal, 2011; Ingale and Dawson, 2011; Kawamoto et al, 2012; Lau et al, 2014c; Lau et al, 2014b; Lau et al, 2014a; Lau et al, 2015b; Scrima et al, 2010), metal chelation (Ghadiri and Choi, 1990; Ruan et al, 1990), disulfide bond formation (Almeida et al, 2012; Jackson et al, 1991; Leduc et al, 2003), lactam ring formation (Fujimoto et al, 2008; Geistlinger and Guy, 2001; Geistlinger and Guy, 2003; Houston, Jr. et al, 1995; Osapay and Taylor, 1992; Phelan et al, 1997) and S-alkylation based staples employing either α-haloacetamide alkylation of single cysteine (Brunel and Dawson, 2005; Cardoso et al, 2007; Galande et al, 2004; Woolley, 2005) or bridging two cysteines with bis-S-alkylating linker(s) (de Araujo et al, 2014; Jo et al, 2012; Muppidi et al, 2011b; Muppidi et al, 2011a; Muppidi et al, 2012; Spokoyny et al, 2013; Szewczuk et al, 1992; Timmerman et al, 2005; Wilkinson et al, 2007; Zhang et al, 2007; Zhang et al, 2008). Among these, the last seems to be most flexible approach as a wide range of inexpensive bis-thiol-reactive linkers is commercially available, including rigid aromatic derivatives (Chua et al, 2015; Jo et al, 2012; Muppidi et al, 2011b; Muppidi et al, 2011a; Muppidi et al, 2012; Timmerman et al, 2005; Zhang et al, 2007) and aliphatic counterparts (Byrne and Stites, 1995; Chua et al, 2015; Lindman et al, 2001; Wilkinson et al, 2007).…”