Ten years ago, the occurrence of macroscopic defects in breasts muscles from fast‐growing broilers challenged producers and animal scientists to label and characterize myopathies wholly unknown. The distinctive white striations in breasts affected by white striping disorder, the presence of out‐bulging and pale areas of hardened consistency in the so‐called wooden breast, and the separation of the fiber bundles in breasts labelled as spaghetti meat, made these myopathies easily identified in chicken carcasses. Yet, the high incidence of these myopathies and the increasing concern by producers and retailers led to an unprecedented flood of questions on the causes and consequences of these abnormal chicken breasts. This review comprehensively collects the most relevant information from studies aimed to understand the pathological mechanisms of these myopathies, their physicochemical and histological characterization and their impact on meat quality and consumer's preferences. Today, it is known that the occurrence is linked to fast‐growth rates of the birds and their large breast muscles. The muscle hypertrophy along with an unbalanced growth of supportive connective tissue leads to a compromised blood supply and hypoxia. The occurrence of oxidative stress and mitochondrial dysfunction leads to lipidosis, fibrosis, and overall myodegeneration. Along with the altered appearance, breast muscles affected by the myopathies display poor technological properties, impaired texture properties, and reduced nutritional value. As consumer's awareness on the occurrence of these abnormalities and the concerns on animal welfare arise, efforts are made to inhibit the onset of the myopathies or alleviate the severity of the symptoms. The lack of fully effective dietary strategies leads scientists to propose whether “slow” production systems may alternatively provide with poultry meat free of these myopathies.