Migration is an incredible phenomenon. Across cultures it moves and inspires us, from the first song of a migratory bird arriving in spring, to the sight of thousands of migratory wildebeest thundering across African plains. Not only important to us as humans, migratory species play a major role in ecosystem functioning across the globe. Migratory species use multiple landscapes and can have dramatically different ecologies across their lifecycle, making huge contributions to resource fluxes and nutrient transport. However, migrants around the world are in decline. In this thesis I examine our conservation response to these declines, exploring how well current approaches account for the unique needs of migratory species, and develop ways to improve on these. The movements of migratory species across time and space make their conservation a multidimensional problem, requiring actions to mitigate threats across jurisdictions, across habitat types and across time. Incorporating such linkages can make a dramatic difference to conservation success, yet migratory species are often treated for the purposes of conservation planning as if they were stationary, ignoring the complex linkages between sites and resources. In this thesis I measure how well existing global conservation networks represent these linkages, discovering major gaps in our current protection of migratory species. I then go on to develop tools for improving conservation of migratory species across two areas: prioritizing actions across species and designing conservation networks.Protected areas are one of our most effective conservation tools, and expanding the global protected area estate remains a priority at an international level. Globally, about 12.9% of the landscape is covered by protected areas, and in Chapter 2 I examine how well migratory birds are represented within current protected areas, specifically taking into account their need for protection across the annual cycle. I discover that just 9% of migratory birds meet standard protection targets across all parts of their migratory distribution, their breeding, non-breeding and passage distributions, in stark contrast to the 45% of non-migratory birds meeting the same targets. There is currently a major push to increase the size and comprehensiveness of the global protected area estate, and these findings highlight the need for greater emphasis on collaboration across nations to incorporate migratory connectivity into our approaches to protected area placement.One of the challenges to incorporating migratory connectivity into systematic conservation planning is that often we have only a poor understanding of the patterns of movements of migratory species ii in space and time. In Chapter 3 and 4 I develop a tool for discovering spatial dynamics in highly mobile yet data-poor species, unlocking valuable information for improved extinction risk assessment and conservation planning. Using Australian arid-zone nomadic birds as a case study, I reveal enormous variability in predicted spa...