A novel iterative conjugate heat transfer method is proposed for thermal modelling of a drill pump motor which is a constant speed three-phase induction motor. The major advantage of this technique is that it enables computational fluid dynamics (CFD) and heat transfer analysis of the rotor and the stator in a segregated manner. The two are then coupled in a separate annulus model, which represents the air gap, via boundary conditions on the annulus walls. This greatly reduces the total number of computational cells and enables good quality mesh generationa prerequisite for accurate CFD predictions. To validate this method, a baseline CFD and heat transfer analysis was done using FLUENT and the maximum temperature prediction was found to be within 1.75% of the previously done experiments on the existing design of the machine. Further, this method was applied to develop a heat transfer enhancement solution which reduced the maximum temperature in the drill motor from 203.5°C to 172.9°C.