Development of a Wafer Defect Pattern Classifier Using Polar Coordinate System Transformed Inputs and Convolutional Neural Networks
Moo Hyun Kim,
Tae Seon Kim
Abstract:Defect pattern analysis of wafer bin maps (WBMs) is an important means of identifying process problems. Recently, automated analysis methods using machine learning or deep learning have been studied as alternatives to manual classification by engineers. In this paper, we propose a method to improve the feature extraction performance of defect patterns by transforming the polar coordinate system instead of the existing WBM image input. To reduce the variability of the location representation, defect patterns in… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.