Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accidents related to the administration of intravenous (IV) medication, such as drug overdose/underdose, drug/patient mis-identification, and delayed bag exchange, occur consistently in clinical fields. Several previous studies have suggested various contact-sensing and image-processing methodologies; however, most of them can increase the workload of nursing staffs during the long-term, continuous monitoring. In this study, we proposed a smart IV pole that can monitor the infusion status of up to four IV medications (patient/drug identification, and liquid residue) with various sizes and hanging positions to reduce IV-related accidents and improve patient safety with the least additional workload; the system consists of 12 cameras, one code scanner, and four controllers. Two types of deep learning models for automated camera selection (CNN-1) and liquid residue monitoring (CNN-2), and three drug residue estimation equations were implemented. The experimental results demonstrated that the accuracy of identification code-checking (60 tests) was 100%. The classification accuracy and the mean inference time of CNN-1 (1200 tests) were 100% and 140 ms. The mean average precision and the mean inference time of CNN-2 (300 tests) were 0.94 and 144 ms. The average error rates between the alarm setting (20, 30, and 40 mL) and the actual drug residue when the alarm first generated were 4.00%, 7.33%, and 4.50% for a 1,000 mL bag; 6.00%, 4.67%, and 2.50% for a 500 mL bag; and 3.00%, 6.00%, and 3.50% for a 100 mL bag, respectively. Our results suggest that the implemented AI-based prototype IV pole is a potential tool for reducing IV-related accidents and improving in-hospital patient safety. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00292-w.
Accidents related to the administration of intravenous (IV) medication, such as drug overdose/underdose, drug/patient mis-identification, and delayed bag exchange, occur consistently in clinical fields. Several previous studies have suggested various contact-sensing and image-processing methodologies; however, most of them can increase the workload of nursing staffs during the long-term, continuous monitoring. In this study, we proposed a smart IV pole that can monitor the infusion status of up to four IV medications (patient/drug identification, and liquid residue) with various sizes and hanging positions to reduce IV-related accidents and improve patient safety with the least additional workload; the system consists of 12 cameras, one code scanner, and four controllers. Two types of deep learning models for automated camera selection (CNN-1) and liquid residue monitoring (CNN-2), and three drug residue estimation equations were implemented. The experimental results demonstrated that the accuracy of identification code-checking (60 tests) was 100%. The classification accuracy and the mean inference time of CNN-1 (1200 tests) were 100% and 140 ms. The mean average precision and the mean inference time of CNN-2 (300 tests) were 0.94 and 144 ms. The average error rates between the alarm setting (20, 30, and 40 mL) and the actual drug residue when the alarm first generated were 4.00%, 7.33%, and 4.50% for a 1,000 mL bag; 6.00%, 4.67%, and 2.50% for a 500 mL bag; and 3.00%, 6.00%, and 3.50% for a 100 mL bag, respectively. Our results suggest that the implemented AI-based prototype IV pole is a potential tool for reducing IV-related accidents and improving in-hospital patient safety. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00292-w.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.