This study suggests a dynamic current cut‐off frequency‐based pole‐zero cancellation speed controller for permanent magnet synchronous motors (PMSMs). The proposed self‐tuning algorithm automatically increases the current cut‐off frequency during only the transient periods and restores it as approaching the steady‐state operation. The outer loop control injects the active damping effect, resulting in a closed‐loop order reduction by pole‐zero cancellation from the particularly structured feedback gain. These two benefits contribute to the following advantages: (a) lowering the steady‐state current cut‐off frequency to improve the relative stability margin and (b) securing the capability of assigning the desired cut‐off frequency to both the inner and outer loops in the first‐order low‐pass filter form. A 500‐W PMSM experimental prototype platform confirms the effectiveness of the proposed controller.