Hepatitis C virus (HCV) entry into host cells is a complex process requiring multiple host factors, including claudin-1 (CLDN1).Safe and effective therapeutic entry inhibitors need to be developed. We isolated a human hepatic Huh7.5.1-derived cell mutant that is nonpermissive to HCV, and comparative microarray analysis showed that the mutant was CLDN1 defective. Four hybridomas were obtained, which produced monoclonal antibodies (MAbs) that interacted with the parental Huh7.5.1 cell but not with the CLDN1-defective mutant. All MAbs produced by these hybridomas specifically bound to human CLDN1 with a very high affinity and prevented HCV infection of Huh7.5.1 cells in a dose-dependent manner, without apparent cytotoxicity. Two selected MAbs also inhibited HCV infection of human liver-chimeric mice without significant adverse effects. CLDN1 may be a potential target to prevent HCV infection in vivo. Anti-CLDN1 MAbs may hence be promising candidates as novel anti-HCV agents.
IMPORTANCESafe and effective therapeutic entry inhibitors against hepatitis C virus (HCV) are very useful for combination therapies with other anti-HCV drugs, such as direct-acting antivirals. In this study, we first showed an effective strategy for developing functional monoclonal antibodies (MAbs) against extracellular domains of a multimembrane-spanning target protein, claudin-1 (CLDN1), by using parental cells expressing the intact target membrane protein and target-defective cells. The established MAbs against CLDN1, which had a very high affinity for intact CLDN1, efficiently inhibited in vitro and in vivo HCV infections. These anti-CLDN1 MAbs are promising leads for novel entry inhibitors against HCV. W orldwide, 170 million people are infected with hepatitis C virus (HCV), which is a major cause of liver cirrhosis and hepatocellular carcinoma. Thus, overcoming HCV infection is an important global health care issue (1). HCV is an enveloped, positive-sense, single-stranded RNA virus in the Flaviviridae family (2). Recent clinical research using direct-acting antivirals that target HCV enzymes, such as sofosbuvir and simeprevir, has provided new insights into combination therapy with inhibitors of multiple targets (3-5).Preventing viral entry into hepatocytes is an attractive target for anti-HCV agents, but strategies for preventing HCV entry into host cells are clinically unavailable (6). Host factors involved in initiating infection include heparan sulfate (7), low-density lipoprotein receptor (8), CD81 (9), scavenger receptor class B type I (SRBI) (10), claudin-1 (CLDN1) (11), occludin (12, 13), epidermal growth factor receptor (EGFR) (14), and Niemann-Pick C1-like 1 (15). Among these, CLDN1 is considered a potent target because it is essential for HCV entry into cells via interaction with CD81 and for cell-to-cell HCV transmission (16,17). Anti-CLDN1 antibodies (Abs) that inhibit HCV infection in vitro were reported by Baumert et al. (18,19) and Hötzel et al. (20), but a CLDN1 binder that prevents HCV infection in vivo has not...