Hand scraping is a manual surface finishing process that, despite its low productivity and high cost, is still applied in many industries because of its advantages concerning accuracy and tribology. In the presented microanalysis forces, movement patterns and tool orientation of individual hand scraping strokes were measured using a test stand, specifically designed for this purpose. It utilizes a camera, a three dimensional dynamometer, and an inertial measurement unit (IMU). The results show the basic characteristics of hand scraping. Typical courses of relevant quantities like cutting force, passive force, clearance, and directional angle are shown. In addition, the movement pattern of the tool during individual scraping strokes is analyzed. This research aims to contribute to a later implementation of automated scraping. The conducted research creates a base for future research regarding different scraping methods and achieved results.