2016
DOI: 10.5120/ijca2016907932
|View full text |Cite
|
Sign up to set email alerts
|

Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms

Abstract: This paper presents appearance based methods for face recognition using linear and nonlinear techniques. The linear algorithms used are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The two nonlinear methods used are the Kernel Principal Components Analysis (KPCA) and Kernel Fisher Analysis (KFA). The linear dimensional reduction projection methods encode pattern information based on second order dependencies. The nonlinear methods are used to handle relationships among three or mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?