The aim of the present study was to evaluate the microtensile bond strength and the microleakage of a bulk-fill composite resin compared with a conventional incremental composite resin, in permanent molars and under cariogenic challenge using a Streptococcus mutans model. Permanent human third molars (n = 60) with an occlusal cavity of 5x3x2 mm were randomly allocated into four subgroups of restorative treatments: conventional composite resin with (n = 15) and without (n = 15) cariogenic challenge (Z350-E and Z350-C experimental and control groups, respectively), and bulk-fill composite resin with (n = 15) and without (n = 15) cariogenic challenge (Bulk Fill-E and Bulk Fill-C, respectively). Ten specimens from each subgroup were submitted to microtensile strength, and 5, to microleakage. The cariogenic challenge was conducted using the Streptococcus mutans strain (ATCC) for 7 days. The stickers obtained (1 x 1 x 2 mm) were submitted to a microtensile strength test, followed by classification of the fracture mode. Microleakage was performed using a scoring system. The data were analyzed by Kruskal-Wallis and Mann-Whitney tests (p < 0.05). Filtek Z350 XT resin presented higher microtensile bond strength than Bulk Fill resin without (19.02 ± 4.90 and 8.76 ± 3.94MPa, respectively; p < 0.001) and with cariogenic challenge (22.69 ± 7.86 and 13.31 ± 3.38MPa, respectively; p < 0.02). Z350-C and Bulk Fill-C resins presented a higher prevalence of mixed fractures (23 and 14%, respectively) in the specimens submitted to cariogenic challenge than those of the control groups, whereas microleakage was similar (p = 0.85). The conventional composite resin had higher microtensile bond strength than the bulk-fill resin, but both resin types had similar adhesion quality and microfiltration scores.