The mitochondria of certain natural isolates of Neurospora contain both the Varkud plasmid, which encodes a reverse transcriptase, and a small unrelated RNA (VS RNA) that performs RNA-mediated self-cleavage and ligation reactions. Here, we show that VS RNA is transcribed from a VS plasmid DNA template by the Neurospora mitochondrial RNA polymerase using a promoter located immediately upstream of the RNA self-cleavage site that generates monomeric transcripts. VS RNA is then reverse transcribed by the Varkud plasmid reverse transcriptase to yield a full-length (-) strand cDNA, a predicted replication intermediate. Combined with previous genetic evidence, our results indicate that the VS plasmid replicates by reverse transcription as a satellite of the Varkud plasmid. This mode of replication, unprecedented for a satellite RNA, likely reflects the promiscuity of the Varkud plasmid reverse transcriptase, which does not require a specific primer to initiate cDNA synthesis. Our findings indicate how primitive reverse transcriptases with similar relaxed specificity could have facilitated the evolution of new retroelements.