2022
DOI: 10.14569/ijacsa.2022.0131160
|View full text |Cite
|
Sign up to set email alerts
|

Development of Automatic Segmentation Techniques using Convolutional Neural Networks to Differentiate Diabetic Foot Ulcers

Abstract: The quality of computer vision systems to detect abnormalities in various medical imaging processes, such as dual-energy X-ray absorptiometry, magnetic resonance imaging (MRI), ultrasonography, and computed tomography, has significantly improved as a result of recent developments in the field of deep learning. There is discussion of current techniques and algorithms for identifying, categorizing, and detecting DFU. On the small datasets, a variety of techniques based on traditional machine learning and image p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 15 publications
0
0
0
Order By: Relevance