Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The therapeutic potential of Cannabis sativa L. extract has gained significant attention due to its diverse medical applications. Sublingual administration remains a common delivery method of cannabinoids; however, challenges often arise due to the inconvenient form of the extract and its taste. To address these issues, a novel bigel formulation was developed, combining water and oil phases to enhance stability and bioavailability. This formulation incorporates a cannabidiol-rich hemp extract, hyaluronic acid for its moisturizing properties, and a taste-masking agent to improve patient compliance and comfort. Using a standardized hemp extract rich in cannabinoids and a well-characterized terpene profile, the printability of the bigels was evaluated through 3D printing technology. A printout with known cannabidiol (CBD) and cannabidiolic acid (CBDA) content of 11.613 mg ± 0.192 of CBD and 4.732 mg ± 0.280 of CBDA in the printout was obtained. In addition, the release profile of CBD and CBDA was evaluated to determine the delivery efficiency of the active ingredient—dissolved active ingredient levels ranged from 74.84% ± 0.50 to 80.87% ± 3.20 for CBD and from 80.84 ± 1.33 to 98.31 ± 1.70 for CBDA depending on the formulation. Rheological studies were conducted to evaluate the viscosity of the bigels under varying temperature conditions, ensuring their stability and usability. Findings suggest that this 3D-printed bigel formulation could significantly enhance the delivery of cannabis extracts, offering a more convenient and effective therapeutic option for patients. This research underscores the importance of innovation in cannabinoid therapies and paves the way for further advancements in personalized medicine.
The therapeutic potential of Cannabis sativa L. extract has gained significant attention due to its diverse medical applications. Sublingual administration remains a common delivery method of cannabinoids; however, challenges often arise due to the inconvenient form of the extract and its taste. To address these issues, a novel bigel formulation was developed, combining water and oil phases to enhance stability and bioavailability. This formulation incorporates a cannabidiol-rich hemp extract, hyaluronic acid for its moisturizing properties, and a taste-masking agent to improve patient compliance and comfort. Using a standardized hemp extract rich in cannabinoids and a well-characterized terpene profile, the printability of the bigels was evaluated through 3D printing technology. A printout with known cannabidiol (CBD) and cannabidiolic acid (CBDA) content of 11.613 mg ± 0.192 of CBD and 4.732 mg ± 0.280 of CBDA in the printout was obtained. In addition, the release profile of CBD and CBDA was evaluated to determine the delivery efficiency of the active ingredient—dissolved active ingredient levels ranged from 74.84% ± 0.50 to 80.87% ± 3.20 for CBD and from 80.84 ± 1.33 to 98.31 ± 1.70 for CBDA depending on the formulation. Rheological studies were conducted to evaluate the viscosity of the bigels under varying temperature conditions, ensuring their stability and usability. Findings suggest that this 3D-printed bigel formulation could significantly enhance the delivery of cannabis extracts, offering a more convenient and effective therapeutic option for patients. This research underscores the importance of innovation in cannabinoid therapies and paves the way for further advancements in personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.