Functionalized membranes provide versatile platforms for incorporation of bio-catalysts and nanostructured materials for efficient and benign environmental remediation. The existing techniques for remediating chloro-organics in water consist of both physical and chemical means mostly using metal oxide-based catalysts, despite associated environmental concerns. To offer bioinspired remediation as an alternative, we herein demonstrate a layer-by-layer approach to immobilize laccase enzyme into pH-responsive functionalized membranes for degradation of chloro-organics from water. Efficacy of these bioinspired membranes towards dechlorination of 2,4,6-trichlorophenol (TCP) is demonstrated under pressure driven continuous flow mode (convective flow) for the first time to the best of our knowledge. Over 80% of the initial TCP was degraded at optimum flow rate under an applied air pressure of about 0.7 bar or lower. This corresponds to degrading a substantial amount of the initial substrate in only 36 seconds residence time, which in a batch reaction take hours. This, in fact, demonstrates an energy efficient flow through system with potential large scale applications. Comparison of the stability of the enzyme in solution phase vs. immobilized on membrane phase showed a loss of some 65% of enzyme activity in the solution phase after 22 days, whereas the membrane-bound enzyme lost only a negligible percentage of activity in comparable time span. Finally, the membrane was exposed to rigorous cycles of TCP degradation trials to study its reusability. The primary results reveal a loss of only 14% of the initial activity after four cycles of use in a period of 25 days, demonstrating its potential to reuse. Regeneration of the functionalized membrane was also validated by dislodging the immobilized enzyme followed by immobilization of fresh enzyme on to the membrane.