Pregnane X receptor (PXR) is a xenobiotic receptor that regulates the detoxification and clearance of drugs and foreign compounds from the liver. There has been mounting evidence of crosstalk between the drug metabolism pathway and the energy metabolism pathway, but little is known about this cross-regulation. To further delineate the energy metabolism and drug metabolism crosstalk in this study, we exposed HepG2 cells to varying glucose concentrations. We observed that PXR activity was induced under high-glucose conditions. This finding is consistent with previous clinical reports of increased drug clearance in patients with untreated diabetes. We demonstrated that AMP-activated protein kinase (AMPK) modulates PXR transcriptional activity and that pharmacologically manipulated AMPK activation exhibits an inverse relation to PXR activity. Activation of AMPK was shown to downregulate PXR activity and, consistent with that, potentiate the response of cells to the drug. Taken together, our results delineate a hitherto unreported axis of regulation that involves the energy status of the cell, PXR regulation, and drug sensitivity.