In view of the problems that exist in the working plane of the inspection robot equipped with precision instruments that cannot always maintain a stable state when moving on a complex road surface, a floating mobile chassis was designed based on the Teoriya Resheniya Izobreatatelskikh Zadatch (TRIZ) theory, and the floating suspension device was also optimized based on the substance field. The kinematic model of the floating mobile chassis was established, and the obstacle-surmounting analysis has been carried out on complex road conditions such as the boss and trench. The dynamic model and mobile performance evaluation model of the obstacle crossing wheel are established. The prototype of the non-floating mobile chassis and the prototype of the floating mobile chassis were respectively established in ADAMS, and the motion comparison simulation analysis of boss, trench crossing and complex road conditions were also carried out. The results showed that the floating mobile chassis has strong adaptive performance, and the stability of the working plane can always be maintained when crossing obstacles.