As a novel non-destructive testing technique, capacitive imaging (CI) has been used to detect defects within the insulation layer and metal surface of an insulated metallic structure, that is, pipe or vessel. Due to the non-linearity of the probing field, the defects at different depths in the insulation layer are difficult to compare accurately using the conventional CI sensor with a single pair of electrodes. In addition, the conventional CI sensor cannot provide adequate information to discriminate the defects in the insulation layer and metal surface. In order to solve the above-mentioned problems, the multi-electrode sensor is introduced. The multi-electrode sensor uses multiple quasi-static fringing electric fields generated by an array of coplanar electrodes to obtain extra information about the defects in the specimen. In this work, the feasibility of multiple quasi-static electric fields detecting the defects was demonstrated and the Measurement Sensitivity Distributions (MSDs) of the multi-electrode sensor detecting the defects were acquired using the FEM models. The simulation and experimental results show that the Dynamic Change Rates (DCRs) of the measured values obtained at the center of the defects in the insulator layer and metal surface present different variation patterns, which can be used to discriminate these two different kinds of defects. The reasons for the different variation patterns of DCRs were explained by the changing trends of MSDs with increased electrode separation. In addition, it was demonstrated that the different depths of the defects in the insulator layer can be compared accurately by comprehensive analysis of the detection results from all the electrode pairs.